1(a). A student sets up three test tubes to investigate the rusting of iron as shown in Fig. 18.1.

- The student measures the mass of each nail at the start of the experiment.
- They measure the mass of each nail again after a week.

The table shows the results.

Test tube	Mass of nail at start (g)	Mass of nail after a week (g)
1	4.42	
2	4.46	
3	4.51	4.51

Complete the table to estimate the mass of the nails in test tubes 1 and 2 after a week.

(b). The student sets up another two test tubes as shown in Fig. 18.2. Fig. 18.2

The iron nail in test tube 4 rusted. The iron nail in test tube 5 did **not** rust.

Explain why.

Test tube 4

[2]

Test tube 5

[3]

(c). Copper is extracted by heating copper oxide with carbon.

$$2CuO + C \rightarrow 2Cu + CO_2$$

i. Explain why this is an example of a **redox** reaction.

_____[2]

ii. Calculate the mass of copper that can be made from 15 tonnes of copper oxide.

$$2CuO + C \rightarrow 2Cu + CO_2$$

Give your answer to 2 significant figures.

Relative atomic mass (A_r): Cu = 63.5 Relative molecular mass (M_r): CuO = 79.5

Mass of copper =tonnes [3]

iii. Copper is used in electrical wires.

The graph shows how impurities in copper affect the relative electrical conductivity of copper.

Analysis of the energy needed to use a product throughout its lifetime.

Analysis of the potential environmental impact of manufacturing a product.

Analysis of the potential environmental impact that a product may have throughout its lifetime.

[1]

В

C

D

Your answer

4. A life-cycle assessment looks at the potential environmental impact at each stage of the life of a product.

A car manufacturer does a life-cycle assessment for cars made from

- steel
- aluminium.

The table gives information about the life-cycle impact of cars made from steel and aluminium.

	Steel	Aluminium
Production CO ₂ emissions from mining the ore, extracting the metal, to manufacturing the car	6444 kg	9794 kg
Driving CO ₂ emissions from the use of petrol or diesel	37 054 kg	36 248 kg
End of life CO ₂ emissions saved by recycling metals rather than extracting new metals	_1546 kg	-3634 kg

Evaluate which type of metal has the smallest environmental impact over its lifetime. Use the information in the table, and your own knowledge of how metals are extracted.				
se the information in the table, and your own knowledge of now metals are extracted.				
	[6			

END OF QUESTION PAPER

[1]

В

С

D

Your answer

It is oxidised.

It is reduced.

It is thermally decomposed.